# krainaksiazek machine learning and data science an introduction to statistical learning methods with r 20128185

- znaleziono 21 produktów w 3 sklepach

### Introduction To Statistical Machine Learning

**Książki Obcojęzyczne>Angielskie>Computing & information technology>Computer science>Artificial intelligence>Machine learning**

Sklep: Gigant.pl

### Introduction To Statistical Machine Learning

**Książki Obcojęzyczne>Angielskie>Computing & information technology>Computer science>Artificial intelligence>Machine learning**

Sklep: Gigant.pl

### Introduction to Machine Learning MIT Press

**Książki / Literatura obcojęzyczna**

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Sklep: Libristo.pl

### Machine Learning Academic Press Inc

**Książki / Literatura obcojęzyczna**

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. * All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.* The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent modeling.* Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.* MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Sklep: Libristo.pl

### Pattern Recognition and Machine Learning Springer

**Książki / Literatura obcojęzyczna**

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra isrequired, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.Coming soon: For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text) For instructors, worked solutions to remaining exercises from the Springer web site Lecture slides to accompany each chapter Data sets available for download

Sklep: Libristo.pl

### Categorization and Machine Learning Books on Demand

**Książki / Literatura obcojęzyczna**

Machine learning is the attempt to imitate human categorization of perceived reality in computers. It is driven by the desire to provide machines that are as open-minded, intelligent and flexible as humans. The central goal is to provide classifications for arbitrary types of input data: Labels that characterize the data correctly, given some examples. Machine learning has been a research topic of computer science for several decades. This book summarizes the major findings, explains the practically relevant methods and discusses their communalities and differences. In the first of three parts, we introduce the setting, goals and all necessary tools for the definition, application and evaluation of learning algorithms. The second part discusses and compares the various algorithms employed in machine categorization today. We structure them in four groups: the optimization algorithms, risk minimization approaches, those that employ probabilistic inference and those that imitate neural inference processes. Outstanding examples from the list of algorithms are the vector space mode, the support vector machine, Bayes and Markov processes, conditional random fields, radial basis function networks and methods employed for deep learning such as the Boltzmann machine. The third part reviews the algorithms and explores the theoretical frontiers of machine learning. In summary, we endeavor to provide a comprehensive yet intuitive introduction into the field of categorization. Neither parallels to human cognition are neglected nor recent developments in algorithm design or theoretical justification. As a research field, machine learning is gaining more and more attention. This book explains what it is, where it can be applied and how it is done.

Sklep: Libristo.pl

### Data Science in R APRESS L.P.

**Książki / Literatura obcojęzyczna**

Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming. What You Will LearnPerform data science and analytics using statistics and the R programming language Visualize and explore data, including working with large data sets found in big data Build an R package Test and check your code Practice version control Profile and optimize your code Who This Book Is For Those with some data science or analytics background, but not necessarily experience with the R programming language.

Sklep: Libristo.pl

### Practical Data Science with R MANNING

**Książki / Literatura obcojęzyczna**

DESCRIPTION Simply put, data science is the discipline of extracting meaning from data. While it can involve deep knowledge of statistics, mathematics, machine learning, and computer science, for most non-academics, data science looks like applying analysis techniques to answer key business questions. Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases faced while collecting, curating, and analyzing the data crucial to the success of businesses. Readers will apply the R programming language and statistical analysis techniques to carefully-explained examples based in marketing, business intelligence, and decision support, while learning how to create instrumentation, design experiments such as A/B tests, and accurately present data to audiences of all levels. RETAIL SELLING POINTS Demonstrations of need-to-know statistical ideas Covers all aspects of the project lifecycle Data science for the motivated business professional AUDIENCE Written for the business analyst, technical consultant or technical director- no formal statistics or mathematics background is required. Readers should be comfortable with quantitative thinking plus light scripting or programming. Some familiarity with R is a plus. ABOUT THE TECHNOLOGY R is a programming language which is used for developing statistical software programs. Data Science is the process of collecting data and developing analysis techniques and software over that data to answer key business questions.

Sklep: Libristo.pl

### Getting Started with Data Science IBM Press

**Książki / Literatura obcojęzyczna**

Harvard Business Review recently called data science "The Sexiest Job of the 21st Century." It's not just sexy: for millions of managers and students who need to solve business problems with big data, it's indispensable. Unfortunately, there's been nothing sexy about learning data science -- until now. Getting Started with Data Science takes its approach from worldwide best-sellers like Freakonomics and the books of Malcolm Gladwell: it teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers careful, jargon-free coverage of basic theory and technique, backed with plenty of clear examples and practice opportunities. Everything's software and platform independent, so you can learn what you need whether you work with R, Stata, SPSS, SAS, or another toolset. Best of all, Haider teaches a crucial skillset most academic data science books ignore: how to transform data into narratives, graphics, and tables that make it vivid and actionable. Every chapter is built around a real research challenge, so you'll always know why you're doing what you're doing. You'll master data science by answering fascinating questions like: * Are child safety seats safer for children than regular seat belts? * Which married parents are likelier to have affairs: fathers or mothers? * Is CEO compensation independent of a firm's profitability? * Do attractive professors get better teaching evaluations? * What induces teenagers to start smoking? * What determines housing prices more: house size or location? * How do teenagers and older people differ in how they use social media? * Do risk-averse and risk-prone individuals differ in their purchases of big-ticket items? For each problem, you'll walk through identifying the right data and methods, creating summary statistics, describing and visualizing findings, and seeing how others have handled the challenge. In advanced chapters, you'll also learn sophisticated statistical modeling techniques. Throughout, the focus is on data: finding it, using it, and powerfully communicating its meaning.

Sklep: Libristo.pl

### COMPUTER AGE STATISTICAL INFERENCE CAMBRIDGE GENERAL ACADEMIC

**Książki / Literatura obcojęzyczna**

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Sklep: Libristo.pl

### Frontiers of Statistical Decision Making and Bayesian Analysis Springer, Berlin

**Książki / Literatura obcojęzyczna**

Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.

Sklep: Libristo.pl

### Foundations of Data Mining and Knowledge Discovery Springer, Berlin

**Książki / Literatura obcojęzyczna**

"Foundations of Data Mining and Knowledge Discovery" contains the latest results and new directions in data mining research. Data mining, which integrates various technologies, including computational intelligence, database and knowledge management, machine learning, soft computing, and statistics, is one of the fastest growing fields in computer science. Although many data mining techniques have been developed, further development of the field requires a close examination of its foundations. This volume presents the results of investigations into the foundations of the discipline, and represents the state of the art for much of the current research. This book will prove extremely valuable and fruitful for data mining researchers, no matter whether they would like to uncover the fundamental principles behind data mining, or apply the theories to practical applications. TOC:From the contents: §Part I Foundations of Data Mining; Knowledge Discovery as Translation; Mathematical Foundation of Association Rules Mining Associations by Solving Integral Linear Inequalities; Comparative Study of Sequential Pattern Mining Models; Designing Robust Regression Models; A Probabilistic Logic-based Framework for Characterizing Knowledge Discovery in Databases; A Careful Look at the Use of Statistical Methodology in Data Mining; Justification and Hypothesis Selection in Data Mining.- Part II Methods of Data Mining; A Comparative Investigation on Model Selection in Binary Factor Analysis; Extraction of Generalized Rules with Automated Attribute Abstraction; Decision Making Based on Hybrid of Multi-knowledge and Na

Sklep: Libristo.pl

### An Introduction To Statistics

**Książki Obcojęzyczne>Angielskie>Mathematics & science>Mathematics>Probability & statistics**

Encouraging An Active Approach To Learning Statistics, This Book Targets Students' Attention Towards Important Statistical Issues.

Sklep: Gigant.pl

### R for Marketing Research and Analytics Springer, Berlin

**Książki / Literatura obcojęzyczna**

This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis.§§Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis.§§With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.§

Sklep: Libristo.pl

### Text Mining Springer, Berlin

**Książki / Literatura obcojęzyczna**

The growth of the web can be seen as an expanding public digital library collection. Online digital information extends far beyond the web and its publicly available information. Huge amounts of information are private and are of interest to local communities, such as the records of customers of a business.§This information is overwhelmingly text and has its record-keeping purpose, but an automated analysis might be desirable to find patterns in the stored records. Analogous to this data mining is text mining, which also finds patterns and trends in information samples but which does so with far less structured--though with greater immediate utility for users--ingredients.§This book focuses on the concepts and methods needed to expand horizons beyond structured, numeric data to automated mining of text samples. It introduces the new world of text mining and examines proven methods for various critical text-mining tasks, such as automated document indexing and information retrieval and search. New research areas are explored, such as information extraction and document summarization, that rely on evolving text-mining techniques.The growth of the web can be seen as an expanding public digital library collection. Online digital information extends far beyond the web and its publicly available information. Huge amounts of information are private and are of interest to local communities, such as the records of customers of a business. This information is overwhelmingly text and has its record-keeping purpose, but an automated analysis might be desirable to find patterns in the stored records. Analogous to this data mining is text mining, which also finds patterns and trends in information samples but which does so with far less structured--though with greater immediate utility for users--ingredients. This book focuses on the concepts and methods needed to expand horizons beyond structured, numeric data to automated mining of text samples. It introduces the new world of text mining and examines proven methods for various critical text-mining tasks, such as automated document indexing and information retrieval and search. New research areas are explored, such as information extraction and document summarization, that rely on evolving text-mining techniques.One consequence of the pervasive use of computers is that most documents originate in digital form. Text mining the process of searching, retrieving, and analyzing unstructured, natural-language text is concerned with how to exploit the textual data embedded in these documents.§Text Mining presents a comprehensive introduction and overview of the field, integrating related topics (such as artificial intelligence and knowledge discovery and data mining) and providing practical advice on how readers can use text-mining methods to analyze their own data. Emphasizing predictive methods, the book unifies all key areas in text mining: preprocessing, text categorization, information search and retrieval, clustering of documents, and information extraction. In addition, it identifies emerging directions for those looking to do research in the area. Some background in data mining is beneficial, but not essential.§Topics and features:§Presents a comprehensive and easy-to-read introduction to text mining§Explores the application and utility of the methods, as well as the optimal techniques for specific scenarios §Provides several descriptive case studies that take readers from problem description to system deployment in the real world§Uses methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English)§Includes access to downloadable software (runs on any computer), as well as useful chapter-ending historical and bibliographical remarks, a detailed bibliography, and subject and author indexes§This authoritative and highly accessible text, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource.

Sklep: Libristo.pl

## szukaj w Kangoo krainaksiazek machine learning and data science an introduction to statistical learning methods with r 20128185

Sklepy zlokalizowane w miastach: Warszawa, Kraków, Łódź, Wrocław, Poznań, Gdańsk, Szczecin, Bydgoszcz, Lublin, Katowice

# Szukaj w sklepach lub całym serwisie

## 1. Sklepy z krainaksiazek pl machine learning and data science an introduction to statistical learning methods with r 20128185

2. Szukaj na wszystkich stronach serwisu

t1=0.074, t2=0, t3=0, t4=0, t=0.074