# krainaksiazek machine learning and data science an introduction to statistical learning methods with r 20128185

- znaleziono 21 produktów w 3 sklepach

### Introduction To Statistical Machine Learning

**Książki Obcojęzyczne>Angielskie>Computing & information technology>Computer science>Artificial intelligence>Machine learning**

Sklep: Gigant.pl

### Introduction To Statistical Machine Learning

**Książki Obcojęzyczne>Angielskie>Computing & information technology>Computer science>Artificial intelligence>Machine learning**

Sklep: Gigant.pl

### Introduction to Machine Learning MIT Press

**Książki / Literatura obcojęzyczna**

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Sklep: Libristo.pl

### An Introduction To Statistical Learning

**Książki Obcojęzyczne>Angielskie>Mathematics & science>Mathematics>Probability & statistics**

This Book Presents Key Modeling And Prediction Techniques, Along With Relevant Applications. Topics Include Linear Regression, Classification, Resampling Methods, Shrinkage Approaches, Tree-based Methods, Support Vector Machines, And Clustering.

Sklep: Gigant.pl

### An Introduction To Support Vector Machines And Other Kernel - Based Learning Methods

**Książki Obcojęzyczne>Angielskie>Computing & information technology>Computer science>Artificial intelligence>Machine learningKsiążki Obc...**

A Comprehensive Introduction To This Recent Method For Machine Learning And Data Mining.

Sklep: Gigant.pl

### Machine Learning Academic Press Inc

**Książki / Literatura obcojęzyczna**

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. * All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.* The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent modeling.* Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.* MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Sklep: Libristo.pl

### Pattern Recognition and Machine Learning Springer

**Książki / Literatura obcojęzyczna**

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra isrequired, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.Coming soon: For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text) For instructors, worked solutions to remaining exercises from the Springer web site Lecture slides to accompany each chapter Data sets available for download

Sklep: Libristo.pl

### Categorization and Machine Learning Books on Demand

**Książki / Literatura obcojęzyczna**

Machine learning is the attempt to imitate human categorization of perceived reality in computers. It is driven by the desire to provide machines that are as open-minded, intelligent and flexible as humans. The central goal is to provide classifications for arbitrary types of input data: Labels that characterize the data correctly, given some examples. Machine learning has been a research topic of computer science for several decades. This book summarizes the major findings, explains the practically relevant methods and discusses their communalities and differences. In the first of three parts, we introduce the setting, goals and all necessary tools for the definition, application and evaluation of learning algorithms. The second part discusses and compares the various algorithms employed in machine categorization today. We structure them in four groups: the optimization algorithms, risk minimization approaches, those that employ probabilistic inference and those that imitate neural inference processes. Outstanding examples from the list of algorithms are the vector space mode, the support vector machine, Bayes and Markov processes, conditional random fields, radial basis function networks and methods employed for deep learning such as the Boltzmann machine. The third part reviews the algorithms and explores the theoretical frontiers of machine learning. In summary, we endeavor to provide a comprehensive yet intuitive introduction into the field of categorization. Neither parallels to human cognition are neglected nor recent developments in algorithm design or theoretical justification. As a research field, machine learning is gaining more and more attention. This book explains what it is, where it can be applied and how it is done.

Sklep: Libristo.pl

### Data Science in R APRESS L.P.

**Książki / Literatura obcojęzyczna**

Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming. What You Will LearnPerform data science and analytics using statistics and the R programming language Visualize and explore data, including working with large data sets found in big data Build an R package Test and check your code Practice version control Profile and optimize your code Who This Book Is For Those with some data science or analytics background, but not necessarily experience with the R programming language.

Sklep: Libristo.pl

### Practical Data Science with R MANNING

**Książki / Literatura obcojęzyczna**

DESCRIPTION Simply put, data science is the discipline of extracting meaning from data. While it can involve deep knowledge of statistics, mathematics, machine learning, and computer science, for most non-academics, data science looks like applying analysis techniques to answer key business questions. Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases faced while collecting, curating, and analyzing the data crucial to the success of businesses. Readers will apply the R programming language and statistical analysis techniques to carefully-explained examples based in marketing, business intelligence, and decision support, while learning how to create instrumentation, design experiments such as A/B tests, and accurately present data to audiences of all levels. RETAIL SELLING POINTS Demonstrations of need-to-know statistical ideas Covers all aspects of the project lifecycle Data science for the motivated business professional AUDIENCE Written for the business analyst, technical consultant or technical director- no formal statistics or mathematics background is required. Readers should be comfortable with quantitative thinking plus light scripting or programming. Some familiarity with R is a plus. ABOUT THE TECHNOLOGY R is a programming language which is used for developing statistical software programs. Data Science is the process of collecting data and developing analysis techniques and software over that data to answer key business questions.

Sklep: Libristo.pl

### Foundations of Data Science Pearson Education (US)

**Książki / Literatura obcojęzyczna**

Data science underlies Amazon's product recommender, LinkedIn's People You Know feature, Pandora's personalized radio stations, Stripe's fraud detectors, and the incredible insights arising from the world's increasingly ubiquitous sensors. In the future, the world's most interesting and impactful problems will be solved with data science. But right now, there's a shortage of data scientists in every industry, traditional schools can't teach students fast enough, and much of the knowledge data scientists need remains trapped in large tech companies. This comprehensive, practical tutorial is the solution. Drawing on his experience building Zipfian Academy's immersive 12-week data science training program, Jonathan Dinu brings together all you need to teach yourself data science, and successfully enter the profession. First, Dinu helps you internalize the data science "mindset": that virtually anything can be quantified, and once you have data, you can harvest amazing insights through statistical analysis and machine learning. He illuminates data science as it really is: a holistic, interdisciplinary process that encompasses the collection, processing, and communication of data: all that data scientists do, say, and believe. With this foundation in place, he teaches core data science skills through hands-on Python and SQL-based exercises integrated with a full book-length case study. Step by step, you'll learn how to leverage algorithmic thinking and the power of code, gain intuition about the power and limitations of current machine learning methods, and effectively apply them to real business problems. You'll walk through: Building basic and advanced models Performing exploratory data analysis Using data analysis to acquire and retain users or customers Making predictions with regression Using machine learning techniques Working with unsupervised learning and NLP Communicating with data Performing social network analyses Working with data at scale Getting started with Hadoop, Spark and other advanced tools Recognizing where common approaches break down, and how to overcome real world constraints Taking your next steps in your study and career Well-crafted appendices provide reference material on everything from the basics of Python and SQL to the essentials of probability, statistics, and linear algebra -- even preparing for your data science job interview!

Sklep: Libristo.pl

### Getting Started with Data Science IBM Press

**Książki / Literatura obcojęzyczna**

Harvard Business Review recently called data science "The Sexiest Job of the 21st Century." It's not just sexy: for millions of managers and students who need to solve business problems with big data, it's indispensable. Unfortunately, there's been nothing sexy about learning data science -- until now. Getting Started with Data Science takes its approach from worldwide best-sellers like Freakonomics and the books of Malcolm Gladwell: it teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers careful, jargon-free coverage of basic theory and technique, backed with plenty of clear examples and practice opportunities. Everything's software and platform independent, so you can learn what you need whether you work with R, Stata, SPSS, SAS, or another toolset. Best of all, Haider teaches a crucial skillset most academic data science books ignore: how to transform data into narratives, graphics, and tables that make it vivid and actionable. Every chapter is built around a real research challenge, so you'll always know why you're doing what you're doing. You'll master data science by answering fascinating questions like: * Are child safety seats safer for children than regular seat belts? * Which married parents are likelier to have affairs: fathers or mothers? * Is CEO compensation independent of a firm's profitability? * Do attractive professors get better teaching evaluations? * What induces teenagers to start smoking? * What determines housing prices more: house size or location? * How do teenagers and older people differ in how they use social media? * Do risk-averse and risk-prone individuals differ in their purchases of big-ticket items? For each problem, you'll walk through identifying the right data and methods, creating summary statistics, describing and visualizing findings, and seeing how others have handled the challenge. In advanced chapters, you'll also learn sophisticated statistical modeling techniques. Throughout, the focus is on data: finding it, using it, and powerfully communicating its meaning.

Sklep: Libristo.pl

### COMPUTER AGE STATISTICAL INFERENCE CAMBRIDGE GENERAL ACADEMIC

**Książki / Literatura obcojęzyczna**

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Sklep: Libristo.pl

### Frontiers of Statistical Decision Making and Bayesian Analysis Springer, Berlin

**Książki / Literatura obcojęzyczna**

Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.

Sklep: Libristo.pl

### Bayesian Methods for Nonlinear Classification and Regression JOHN WILEY & SONS LTD

**Książki / Literatura obcojęzyczna**

Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods. * Focuses on the problems of classification and regression using flexible, data-driven approaches.* Demonstrates how Bayesian ideas can be used to improve existing statistical methods.* Includes coverage of Bayesian additive models, decision trees, nearest-neighbour, wavelets, regression splines, and neural networks.* Emphasis is placed on sound implementation of nonlinear models.* Discusses medical, spatial, and economic applications.* Includes problems at the end of most of the chapters.* Supported by a web site featuring implementation code and data sets.Primarily of interest to researchers of nonlinear statistical modelling, the book will also be suitable for graduate students of statistics. The book will benefit researchers involved inregression and classification modelling from electrical engineering, economics, machine learning and computer science. The material available at the link below is 'Matlab code for implementing the examples in the book'. http://stats.ma.ic.ac.uk/~ccholmes/Book-code/book-code.html

Sklep: Libristo.pl

## szukaj w Kangoo krainaksiazek machine learning and data science an introduction to statistical learning methods with r 20128185

Sklepy zlokalizowane w miastach: Warszawa, Kraków, Łódź, Wrocław, Poznań, Gdańsk, Szczecin, Bydgoszcz, Lublin, Katowice

# Szukaj w sklepach lub całym serwisie

## 1. Sklepy z krainaksiazek pl machine learning and data science an introduction to statistical learning methods with r 20128185

2. Szukaj na wszystkich stronach serwisu

t1=0.096, t2=0, t3=0, t4=0, t=0.096