# krainaksiazek on the reynolds transport theorem for fluid systems 20097177

- znaleziono 8 produktów w 3 sklepach

### On The Reynolds Transport Theorem For Fluid Systems

**Książki Obcojęzyczne>Angielskie>Mathematics & science>Physics>Classical mechanics**

0x00ccc91200000000

Sklep: Gigant.pl

### Nano and Bio Heat Transfer and Fluid Flow ELSEVIER SCIENCE

**Książki / Literatura obcojęzyczna**

Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help you translate the theory into real world applications such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, and also what complications arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows and heat transfer. Discusses nanoparticle applications in drug deliveryCovers the engineering fundamentals of bio heat transfer and fluid flowExplains how to simulate, analyze and evaluate the transportation of heat and mass problems in bio-systems

Sklep: Libristo.pl

### Systems Biology of Tumor Microenvironment Springer, Berlin

**Książki / Literatura obcojęzyczna**

This edited volume discusses the complexity of tumor microenvironments during cancer development, progression and treatment. Each chapter presents a different mathematical model designed to investigate the interactions between tumor cells and the surrounding stroma and stromal cells. The topics covered in this book include the quantitative image analysis of a tumor microenvironment, the microenvironmental barriers in oxygen and drug delivery to tumors, the development of tumor microenvironmental niches and sanctuaries, intravenous transport of the circulating tumor cells, the role of the tumor microenvironment in chemotherapeutic interventions, the interactions between tumor cells, the extracellular matrix, the interstitial fluid, and the immune and stromal cells. Mathematical models discussed here embrace both continuous and agent-based approaches, as well as mathematical frameworks of solid mechanics, fluid dynamics and optimal control theory. The topics in each chapter will be of interest to a biological community wishing to apply the mathematical methods to interpret their experimental data, and to a biomathematical audience interested in exploring how mathematical models can be used to address complex questions in cancer biology.??

Sklep: Libristo.pl

### Applied Hydro- and Aeromechanics Dover Publications

**Książki / Literatura obcojęzyczna**

ENGINEERING SOCIETIES MONOGRAPHS PREFACE INTRODUCTION CHAPTER 1 ELEMENTS OF HYDRODYNAMICS 1. The Equation of Euler for One-dimensional Flow 2. The Equation of Bernoulli for One-dimensional Flow; Three-dimensional Equation of Euler 3. Definition of Viscosity; Equation of Navier-Stokes CHAPTER II LAWS OF SIMILARITY 4. The Law of Similarity under the Action of Inertia and Viscosity 5. The Law of Similarity under the Action of Inertia and Gravity 6. Relation between Considerations of Similarity and Dimensional Analysis CHAPTER III FLOW IN PIPES AND CHANNELS A. Laminar Flow 8. General 9. The Fundamental Investigation of Hagen 10. The Investigation of Poiseuille 11. The Law of Hagen-Poiseuille 12. Derivation of Hagen-Poiseuille's Law from Newton's Viscosity Law 13. Limits of the Validity of the Hagen-Poiseuille Law 14. Phenomena Near the Entrance of the Tube 15. The Length of Transition 16. The Pressure Distribution in the Region Near the Entrance 17. The Correction Term for Kinetic Energy 18. The Velocity Distribution in the Region Near the Entrance 19. The Pressure Drop in the Entrance Region in the Case of Laminar Flow 20. The Importance of the Pressure Drop in the Entrance Region for Viscosity Measurements B. The Transition between Laminar and Turbulent Flow 21. The First Investigations by Hagen 22. The Fundamental Investigation by Reynolds 23. The Critical Reynolds' Number 24. Influence of the Initial Disturbance on the Critical Reynolds' Number 25. The Conditions at the Transition between Laminar and Turbulent Flow 26. Intermittent Occurrence of Turbulence 27. Measurements of Pressure Drop at the Transition between Laminar and Turbulent Flow 28. Independence of the Critical Reynolds' Number of the Length of the Tube C. Turbulent Flow 29. Historical Formulas for the Pressure Drop 30. The Resistance Formula of Blasius for Smooth Tubes 31. The Resistance Law for Rough Tubes 32. Roughness and Waviness of the Walls 33. Measurement of the Mean Velocity of a Turbulent Flow Means of a Pitot Tube 34. The Turbulent Velocity Distribution 35. The Turbulent Velocity Distribution in the Region of Transition Near the Entrance of the Tube 36. The Pressure Drop in the Turbulent Region of Transition 37. Convergent and Divergent Flow CHAPTER IV BOUNDARY LAYERS 38. The Region in Which Viscosity is Effective for Large Reynolds' Numbers 39. The Order or Magnitude of the Various Terms in the Equation of Navier-Stokes for Large Reynolds' Numbers 40. The Differential Equation of the Boundary Layer 41. Definition of Thickness of the Boundary Layer 42. Estimate of the Order of Magnitude of the Thickness of the Boundary Layer for the Flow along a Flat Plate 43. Skin Friction Due to a Laminar Boundary Layer 44. Back Flow in the Boundary Layer as the Cause of Formation of Vortices 45. Turbulent Boundary Layers 46. The Seventh-root Law of the Turbulent Velocity Distribution 47. Shear Stress at the Wall in the Case of a Turbulent Boundary Layer and the Thickness of This Layer 48. Friction Drag Due to a Turbulent Boundary Layer 49. Laminar Boundary Layer Inside a Turbulent one 50. Means of Avoiding the Creation of Free Vortex Sheets and Their Consequences 51. Influencing the Flow by Sucking Away the Boundary Layer 52. Rotating Cylinder and Magnus Effect CHAPTER V DRAG OF BODIES MOVING THROUGH FLUIDS 53. Fundamental Notions 54. Newton's Resistance Law 55. Modern Ideas on the Nature of Drag 56. The Deformation Resistance for Very Small Reynolds' Numbers 57. The Influence of a Very Small Viscosity on the Drag 58. The Relative Importance of Pressure Drag and Friction Drag with Various Shapes of the Body 59. The Variation of the Drag with Reynolds' Number 60. "The Laws of Pressure Drag, Friction Drag, and Deformation Drag" 61. General Remarks on the Experimental Results 62. The Relation c = f (R) for the Infinite Cylinder 63. The Region above the Critical Reynolds' Number 64. "The Resistance Law for Finite Cylinders, Spheres, and Streamlines Bodies" 65. Resistance in Fluids with Free Surfaces; Wave Resistance 66. The General Resistance Law 67. Resistance to Potential Flow 68. Drag of a Sphere Is Zero for Uniform Potential Flow 69 Resistance Due to Acceleration 70. Application of the Momentum Theorem 71. Mutual Forces between Several Bodies Moving through a Fluid 72. Resistance with Discontinuous Potential Flow 73. Stoke's Law of Resistance 74. Experimental Verification for Water; Influence of the Walls of the Vessel 75. Experimental Verification for Gases 76. Correction of Stoke's Law by Oseen 77. The Resistance of Bodies in Fluids of Very Small Viscosity 78. The Resistance of the Half Body 79. Momentum of a Source 80. The Resistance of a Body Calculated from Momentum Considerations 81. Method of Betz for the Determination of the Drag from Measurements in the Wake 82. The Kármán Trail 83. Application of the Momentum Theorem to the Kármán Trail 84. Bodies of Small Resistance; Streamlining 85. Comparison of the Calculated Pressure Distribution with the Experimental One 86. Friction Drag of Flat Plates CHAPTER VI AIRFOIL THEORY A. Experimental Results 87. Lift and Drag 88. The Ratio of Lift to Drag; Gliding angle 89. The Lift and Drag Coefficients 90. The Polar and Moment Diagrams of an Airfoil 91. Relation between the Flying Characteristics of Airfoils and Their Pofiles 92. Properties of Slotted Wings 93. The Principle of Operation of a Slotted Wing 94. Pressure Distribution on Airfoils B. The Airfoil of Infinite Length (Two-dimensional Airfoil Theory) 95. Relation beween Lift and Circulation 96. The Pressure Integral over the Airfoil Surface 97. Derivation of the Law of Kutta-Joukowsky by Means of the Flow through a Grid 98. Derivation of the Lift Formula of Kutta-Joukowsky on the Assumption of a Lifting Vortex 99. The Generation of Circulation 100. The Starting Resistance 101. The Velocity Field in the Vicinity of the Airfoil 102. Application of Conformal Mapping to the Flow round Flat or Curved Plates 103. Superposition of a Parallel Flow and a Circulation Flow 104. Determination of the Amount of Circulation 105. Joukowsky's Method of Conformal Mapping 106. Mapping of Airfoil Profiles with Finite Tail Angle C. Three-dimensional Airfoil Theory 107. Continuation of the Circulation of the Airfoil in the Wing-tip Eddies 108. Transfer of the Airplane Weight to the Surface of the Earth 109. Relation between Drag and Aspect Ratio 110. Rough Estimate of the Drag 111. The Jump in Potential behind the Wing 112. The Vortex Sheet behind the Wing with Lift Tapering toward the Tips 113. The Downward Velocity Induced by a Single Vortex Filament 114. Determination of the Induced Drag for a Given Lift Distribution 115. Minimum of the Induced Drag; the Lift Distribution of an Airfoil of Given Shape and Angle of Attack 116. Conversion Formulas 117. Mutual Influence of Bound Vortex Systems; the Unstaggered Biplane 118. The Staggered Biplane 119. The Total Induced Drag of Biplanes 120. Minimum Theorem for Multiplanes 121. The Influence of Walls and of Free Boundaries 122. Calculation of the Influece for a Circular Cross Section CHAPTER VII EXPERIMENTAL METHODS AND APPARATUS A. Pressure and Velocity Measurements 123. General Remarks on Pressure Measurement in Liquids and Gases 124. Static Pressure 125. Total Pressure 126. Velocity Measurement with Pitot-static Tube 127. Determination of the Direction of the Velocity 128. Fluid Manometers 129. Sensitive Pressure Gages 130. Vane Wheel Instruments 131. Electrical Methods of Velocity Measurement 132. Velocity Measurements in Pipes and Channels 133. Venturi Meter 134. Orifices 135. Weirs 136. Other Methods for Volume Measurement B. Drag Measurements 137. The Various Methods 138. Towing Tests 139. The Method of Free Falling 140. Rotating-arm Measurements 141. Drag Measurement in the Natural Wind 142. Advantages of Drag Measurement in an Artificial Air Stream C. Wind Tunnels 143. The First Open Wind Tunnels of Stanton and Raibouchinsky 144. The First Closed Wind Tunnels in Göttingen and London 145. The First Wind Tunnel of eiffel with Free Jet 146. Modern English Tunnels 147. The Large Wind Tunnel in Göttingen 148. Wind Tunnels in Other Countries 149. Suspension of the Models and Measurement of the Forces 150. The Three-component Balance in Göttingen 151. The Aerodynamic Balance of Eiffel D. Visualizing Flow Phenomena 152. Fundamental Difficulties 153. Mixing Smoke in air Streams 154. Motions in the Boundary Layer 155. Three-dimensional Fluid Motions 156. Two-dimensional Fluid Motions 157. Advantage of Photographs over Visual Observations 158. Streamlines and Path Lines 159. Slow and Fast Moving Pictures 160. Long-exposure Moving Pictures 161. Technical Details PLATES INDEX

Sklep: Libristo.pl

### Spalona Żywcem Wyd. Kieszonkowe - Souad

**Książki & Multimedia > Książki**

Opis - Pierwsze na świecie świadectwo ofiary zbrodni honorowej. Miała siedemnaście lat i zakochała się: zhańbiła rodzinę. Więc rodzina wydała na nią wyrok śmierci... Pokochała go pierwszą miłością. Myślała, że się z nią ożeni. Ale ukochany zniknął, a ona odkryła, że jest w ciąży. A w jej świecie to najcięższa zbrodnia... W zapomnianej przez Boga wiosce w Cisjordanii kobiety są warte mniej niż zwierzęta domowe. Tu mężczyzna jest panem życia i śmierci żony, córki, siostry. Brat może bezkarnie zabić siostrę, matka - córkę, kolejną bezużyteczną dziewczynkę, jaka się urodzi. Tu kobiecie odbiera się godność, a nawet życie zgodnie z odwiecznym obyczajem i uświęconą tradycją. A śmierć jest karą dla dziewczyny, która zhańbi rodzinę. Tak jak Souad. Wyrok wydaje jej ojciec. Szwagier dokonuje egzekucji. Oblewa Souad benzyną i podpala... SOUAD przeżyła - cudem, ale rodzina usiłowała zabić ją nawet w szpitalu. Na zawsze jednak pozostanie straszliwie okaleczona - na ciele i duszy. I wciąż musi się ukrywać; dopóki żyje, jej rodzinę okrywa hańba. Spalona żywcem, opublikowana pod pseudonimem szokująca opowieść o piekle, jakim było jej dzieciństwo i młodość, stała się międzynarodowym bestsellerem. Wydana w 37 w krajach książka przerywa tabu milczenia wobec istniejącej nadal w krajach muzułmańskich barbarzyńskiej tradycji. Nieludzkiego obyczaju, prawa mężczyzn, na mocy którego co najmniej pięć tysięcy kobiet pada co roku ofiarą zbrodni honorowej. Nazwa - Spalona Żywcem Wyd. Kieszonkowe Autor - Souad Oprawa - Miękka Wydawca - Amber Kod ISBN - 9788324159406 Kod EAN - 9788324159406 Wydanie - 1 Rok wydania - 2016 Tłumacz - 31182,maria rostworowska; Format - 110 x 175 x 14 Ilość stron - 224 Podatek VAT - 5% Premiera - 2016-06-23

Sklep: InBook.pl

### Computational Subsurface Hydrology Springer, Berlin

**Książki / Literatura obcojęzyczna**

Any numerical subsurface model is comprised of three components: a theoretical basis to translate our understanding phenomena into partial differential equations and boundary conditions, a numerical method to approximate these governing equations and implement the boundary conditions, and a computer implementation to generate a generic code for research as well as for practical applications. Computational Subsurface Hydrology: Reactions, Transport, and Fate is organized around these themes. §The fundamental processes occurring in subsurface media are rigorously integrated into governing equations using the Reynolds transport theorem and interactions of these processes with the surrounding media are sophisticatedly cast into various types of boundary conditions using physical reasoning. A variety of numerical methods to deal with reactive chemical transport are covered in Computational Subsurface Hydrology: Reactions, Transport, and Fate with a particular emphasis on the adaptive local grid refinement and peak capture using the Lagrangian-Eulerian approach. The topics on coupled fluid flows and reactive chemical transport are unique contributions of this book. They serve as a reference for research as well as for practical applications with a computer code that can be purchased from the author. §Four computer codes to simulate vertically integrated horizontal solute transport (LEMA), contaminant transport in moving phreatic aquifers in three dimensions (3DLEMA), solute transport in variably saturated flows in two dimensions (LEWASTE), and solute transport under variably saturated flows in three dimensions (3DLEWASTE) are covered. These four computer codes are designed for generic applications to both research and practical problems. They could be used to simulate most of the practical, real-world field problems. §Reactive chemical transport and its coupling with fluid flows are unique features in this book. Theories, numerical implementations, and example problems of coupled reactive transport and flows in variably saturated media are presented. A generic computer code, HYDROGEOCHEM 3.0, is developed. A total of eight example problems are used to illustrate the application of the computational model. These problems are intended to serve as examples for setting up a variety of simulations that one may encounter in research and field-site applications. §Computational Subsurface Hydrology: Reactions, Transport, and Fate offers practicing engineers and scientists a theoretical background, numerical methods, and computer codes for modeling contaminant transport in subsurface media. It also serves as a textbook for senior and graduate course on reactive chemical transport in subsurface media in disciplines such as civil and environmental engineering, agricultural engineering, geosciences, soil sciences, and chemical engineering. §Computational Subsurface Hydrology: Reactions, Transport, and Fate presents a systematic derivation of governing equations and boundary conditions of subsurface contaminant transport as well as reaction-based geochemical and biochemical processes. It discusses a variety of numerical methods for moving sharp-front problems, expounds detail procedures of constructing Lagrangian-Eulerian finite element methods, and describes precise implementation of computer codes as they are applied to subsurface contaminant transport and biogeochemical reactions.

Sklep: Libristo.pl

### First Course in Turbulence The MIT Press

**Książki / Literatura obcojęzyczna**

The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed.Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book.The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved.In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout.A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets.Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients.The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.

Sklep: Libristo.pl

### Intermediate Physics for Medicine and Biology Springer, Berlin

**Książki / Literatura obcojęzyczna**

This classic text has been used in over 20 countries by advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, neuroscience, and biomedical engineering. It bridges the gap between an introductory physics course and the application of physics to the life and biomedical sciences. Extensively revised and updated, the fifth edition incorporates new developments at the interface between physics and biomedicine. New coverage includes cyclotrons, photodynamic therapy, color vision, x-ray crystallography, the electron microscope, cochlear implants, deep brain stimulation, nanomedicine, and other topics highlighted in the National Research Council report BIO2010. As with the previous edition, the first half of the text is primarily biological physics, emphasizing the use of ideas from physics to understand biology and physiology, and the second half is primarily medical physics, describing the use of physics in medicine for diagnosis (mainly imaging) and therapy. Among the many topics carried forward are thorough treatments of forces in the skeletal system, fluid flow, the logistic equation, scaling, equilibrium in statistical mechanics, the chemical potential and free energy, transport, membranes and osmosis, magnetic and electrical signals from nerves and the heart, membranes and gated channels in membranes, biological magnetic fields, linear and nonlinear feedback systems, including biological clocks and chaotic behavior, biological signal analysis, hearing and medical ultrasound, atoms and light, optical coherence tomography, radiometry and photometry, the interaction of photons and charged particles in tissue, radiological physics and the use of x-rays in diagnosis and therapy, nuclear medicine, and magnetic resonance imaging. Discussion of theory is closely linked to experiment. Prior courses in physics and in calculus are assumed. Intermediate Physics for Medicine and Biology, Fifth Edition is also ideal for self study and as a reference for workers in medical and biological research. Over 850 problems test and enhance the student's understanding and provide additional biological examples. A solutions manual is available to instructors. Each chapter has an extensive list of references.

Sklep: Libristo.pl

Sklepy zlokalizowane w miastach: Warszawa, Kraków, Łódź, Wrocław, Poznań, Gdańsk, Szczecin, Bydgoszcz, Lublin, Katowice

# Szukaj w sklepach lub całym serwisie

## 1. Sklepy z krainaksiazek pl on the reynolds transport theorem for fluid systems 20097177

2. Szukaj na wszystkich stronach serwisu

t1=0.037, t2=0, t3=0, t4=0, t=0.038