krainaksiazek physical significance of entropy or of the second law 27710096

- znaleziono 7 produktów w 2 sklepach

Physical Significance Of Entropy Or Of The Second Law (Classic Reprint) - 2852954043

47,99 zł

Physical Significance Of Entropy Or Of The Second Law (Classic Reprint)

Książki Obcojęzyczne>Angielskie>Mathematics & science>Physics

0x0000348800000000

Sklep: Gigant.pl

Entropy Demystified: The Second Law Reduced To Plain Common Sense (Second Edition) - 2849940976

159,99 zł

Entropy Demystified: The Second Law Reduced To Plain Common Sense (Second Edition)

Książki Obcojęzyczne>Angielskie>Mathematics & science>Physics>Thermodynamics & heatKsiążki Obcojęzyczne>Angielskie>Mathematics & sci...

0x0082f3e300000000

Sklep: Gigant.pl

Entropy Demystified: The Second Law Reduced To Plain Common Sense - 2866669981

159,78 zł

Entropy Demystified: The Second Law Reduced To Plain Common Sense World Scientific Publishing Co Pte Ltd

Książki / Literatura obcojęzyczna

In this unique book, the reader is invited to experience the joy of appreciating something which has eluded understanding for many years -- entropy and the Second Law of Thermodynamics. The book has a two-pronged message: first, that the Second Law is not

Sklep: Libristo.pl

Direction of Time - 2876539273

75,16 zł

Direction of Time Dover Publications Inc.

Książki / Literatura obcojęzyczna

I. Introduction 1. The Emotive Significance of TimeII. The Time Order of Mechanics 2. The Qualitative Properties of Time 3. The Causal Theory of Time 4. Causality in Classical Physics 5. The Causal Definition of Time Order 6. InterventionIII. The Time Direction of Thermodynamics and Microstatistics 7. Report on the Second Law of Thermodynamics 8. The Statistical Definition of Entropy 9. Extension of Statistics to Different Energy Levels 10. A Deterministic Interpretation of Thermodynamical Statistics 11. Determinism Versus Indeterminism in Classical Physics 12. The Probability Lattice 13. The Reversibility Objection 14. The Time Direction of the Space Ensemble 15. The Sectional Nature of Time Direction 16. The Hypothesis of the Branch StructureIV. The Time Direction of Macrostatistics 17. Macroarrangements and Macroentropy 18. Cause and Effect: Producing and Recording 19. The Principle of the Common Cause 20. Entropy and Information 21. The Time Direction of Information and the Theory of Registering Instruments 22. A Completely Macrostatistical Definition of Time Direction 23. The Mark Principle and Causal RelevanceV. The Time of Quantum Physics 24. The Statistical Reversibility of the Elementary Processes of Quantrum Mechanics 25. The Indeterminism of Quantum Mechanics 26. The Genidentity of Quantum Particles 27. The Entropy Concept of Quantum Statistics 28. Extension of Quantum Statistics to Different Energy Levels 29. Particles Vanishing into Nonexistence 30. Particles Traveling Backward in Time Appendix Index

Sklep: Libristo.pl

Variational Principles of Mechanics - 2826713767

94,93 zł

Variational Principles of Mechanics Dover Publications

Książki / Literatura obcojęzyczna

Introduction 1. The variational approach to mechanics 2. The procedure of Euler and Lagrange 3. Hamilton's procedure 4. The calculus of variations 5. Comparison between the vectorial and the variational treatments of mechanics 6. Mathematical evaluation of the variational principles 7. Philosophical evaluation of the variational approach to mechanics I. The Basic Concepts of Analytical Mechanics 1. The Principal viewpoints of analytical mechanics 2. Generalized coordinates 3. The configuration space 4. Mapping of the space on itself 5. Kinetic energy and Riemannian geometry 6. Holonomic and non-holonomic mechanical systems 7. Work function and generalized force 8. Scleronomic and rheonomic systems. The law of the conservation of energy II. The Calculus of Variations 1. The general nature of extremum problems 2. The stationary value of a function 3. The second variation 4. Stationary value versus extremum value 5. Auxiliary conditions. The Lagrangian lambda-method 6. Non-holonomic auxiliary conditions 7. The stationary value of a definite integral 8. The fundamental processes of the calculus of variations 9. The commutative properties of the delta-process 10. The stationary value of a definite integral treated by the calculus of variations 11. The Euler-Lagrange differential equations for n degrees of freedom 12. Variation with auxiliary conditions 13. Non-holonomic conditions 14. Isoperimetric conditions 15. The calculus of variations and boundary conditions. The problem of the elastic bar III. The principle of virtual work 1. The principle of virtual work for reversible displacements 2. The equilibrium of a rigid body 3. Equivalence of two systems of forces 4. Equilibrium problems with auxiliary conditions 5. Physical interpretation of the Lagrangian multiplier method 6. Fourier's inequality IV. D'Alembert's principle 1. The force of inertia 2. The place of d'Alembert's principle in mechanics 3. The conservation of energy as a consequence of d'Alembert's principle 4. Apparent forces in an accelerated reference system. Einstein's equivalence hypothesis 5. Apparent forces in a rotating reference system 6. Dynamics of a rigid body. The motion of the centre of mass 7. Dynamics of a rigid body. Euler's equations 8. Gauss' principle of least restraint V. The Lagrangian equations of motion 1. Hamilton's principle 2. The Lagrangian equations of motion and their invariance relative to point transformations 3. The energy theorem as a consequence of Hamilton's principle 4. Kinosthenic or ignorable variables and their elimination 5. The forceless mechanics of Hertz 6. The time as kinosthenic variable; Jacobi's principle; the principle of least action 7. Jacobi's principle and Riemannian geometry 8. Auxiliary conditions; the physical significance of the Lagrangian lambda-factor 9. Non-holonomic auxiliary conditions and polygenic forces 10. Small vibrations about a state of equilibrium VI. The Canonical Equations of motion 1. Legendre's dual transformation 2. Legendre's transformation applied to the Lagrangian function 3. Transformation of the Lagrangian equations of motion 4. The canonical integral 5. The phase space and the space fluid 6. The energy theorem as a consequence of the canonical equations 7. Liouville's theorem 8. Integral invariants, Helmholtz' circulation theorem 9. The elimination of ignorable variables 10. The parametric form of the canonical equations VII. Canonical Transformations 1. Coordinate transformations as a method of solving mechanical problems 2. The Lagrangian point transformations 3. Mathieu's and Lie's transformations 4. The general canonical transformation 5. The bilinear differential form 6. The bracket expressions of Lagrange and Poisson 7. Infinitesimal canonical transformations 8. The motion of the phase fluid as a continuous succession of canonical transformations 9. Hamilton's principal function and the motion of the phase fluid VIII. The Partial differential equation of Hamilton-Jacobi 1. The importance of the generating function for the problem of motion 2. Jacobi's transformation theory 3. Solution of the partial differential equation by separation 4. Delaunay's treatment of separable periodic systems 5. The role of the partial differential equation in the theories of Hamilton and Jacobi 6. Construction of Hamilton's principal function with the help of Jacobi's complete solution 7. Geometrical solution of the partial differential equation. Hamilton's optico-mechanical analogy 8. The significance of Hamilton's partial differential equation in the theory of wave motion 9. The geometrization of dynamics. Non-Riemannian geometrics. The metrical significance of Hamilton's partial differential equation IX. Relativistic Mechanics 1. Historical Introduction 2. Relativistic kinematics 3. Minkowski's four-dimensional world 4. The Lorentz transformations 5. Mechanics of a particle 6. The Hamiltonian formulation of particle dynamics 7. The potential energy V 8. Relativistic formulation of Newton's scalar theory of gravitation 9. Motion of a charged particle 10. Geodesics of a four-dimensional world 11. The planetary orbits in Einstein's gravitational theory 12. The gravitational bending of light rays 13. The gravitational red-shirt of the spectral lines Bibliography X. Historical Survey XI. Mechanics of the Continua 1. The variation of volume integrals 2. Vector-analytic tools 3. Integral theorems 4. The conservation of mass 5. Hydrodynamics of ideal fluids 6. The hydrodynamic equations in Lagrangian formulation 7. Hydrostatics 8. The circulation theorem 9. Euler's form of the hydrodynamic equations 10. The conservation of energy 11. Elasticity. Mathematical tools 12. The strain tensor 13. The stress tensor 14. Small elastic vibrations 15. The Hamiltonization of variational problems 16. Young's modulus. Poisson's ratio 17. Elastic stability 18. Electromagnetism. Mathematical tools 19. The Maxwell equations 20. Noether's principle 21. Transformation of the coordinates 22. The symmetric energy-momentum tensor 23. The ten conservation laws 24. The dynamic law in field theoretical derivation Appendix I; Appendix II; Bibliography; Index

Sklep: Libristo.pl

Variational Principles of Mechanics - 2875793021

120,89 zł

Variational Principles of Mechanics Dover Publications Inc.

Książki / Literatura obcojęzyczna

Introduction 1. The variational approach to mechanics 2. The procedure of Euler and Lagrange 3. Hamilton's procedure 4. The calculus of variations 5. Comparison between the vectorial and the variational treatments of mechanics 6. Mathematical evaluation of the variational principles 7. Philosophical evaluation of the variational approach to mechanicsI. The Basic Concepts of Analytical Mechanics 1. The Principal viewpoints of analytical mechanics 2. Generalized coordinates 3. The configuration space 4. Mapping of the space on itself 5. Kinetic energy and Riemannian geometry 6. Holonomic and non-holonomic mechanical systems 7. Work function and generalized force 8. Scleronomic and rheonomic systems. The law of the conservation of energyII. The Calculus of Variations 1. The general nature of extremum problems 2. The stationary value of a function 3. The second variation 4. Stationary value versus extremum value 5. Auxiliary conditions. The Lagrangian lambda-method 6. Non-holonomic auxiliary conditions 7. The stationary value of a definite integral 8. The fundamental processes of the calculus of variations 9. The commutative properties of the delta-process 10. The stationary value of a definite integral treated by the calculus of variations 11. The Euler-Lagrange differential equations for n degrees of freedom 12. Variation with auxiliary conditions 13. Non-holonomic conditions 14. Isoperimetric conditions 15. The calculus of variations and boundary conditions. The problem of the elastic barIII. The principle of virtual work 1. The principle of virtual work for reversible displacements 2. The equilibrium of a rigid body 3. Equivalence of two systems of forces 4. Equilibrium problems with auxiliary conditions 5. Physical interpretation of the Lagrangian multiplier method 6. Fourier's inequalityIV. D'Alembert's principle 1. The force of inertia 2. The place of d'Alembert's principle in mechanics 3. The conservation of energy as a consequence of d'Alembert's principle 4. Apparent forces in an accelerated reference system. Einstein's equivalence hypothesis 5. Apparent forces in a rotating reference system 6. Dynamics of a rigid body. The motion of the centre of mass 7. Dynamics of a rigid body. Euler's equations 8. Gauss' principle of least restraintV. The Lagrangian equations of motion 1. Hamilton's principle 2. The Lagrangian equations of motion and their invariance relative to point transformations 3. The energy theorem as a consequence of Hamilton's principle 4. Kinosthenic or ignorable variables and their elimination 5. The forceless mechanics of Hertz 6. The time as kinosthenic variable; Jacobi's principle; the principle of least action 7. Jacobi's principle and Riemannian geometry 8. Auxiliary conditions; the physical significance of the Lagrangian lambda-factor 9. Non-holonomic auxiliary conditions and polygenic forces 10. Small vibrations about a state of equilibriumVI. The Canonical Equations of motion 1. Legendre's dual transformation 2. Legendre's transformation applied to the Lagrangian function 3. Transformation of the Lagrangian equations of motion 4. The canonical integral 5. The phase space and the space fluid 6. The energy theorem as a consequence of the canonical equations 7. Liouville's theorem 8. Integral invariants, Helmholtz' circulation theorem 9. The elimination of ignorable variables 10. The parametric form of the canonical equationsVII. Canonical Transformations 1. Coordinate transformations as a method of solving mechanical problems 2. The Lagrangian point transformations 3. Mathieu's and Lie's transformations 4. The general canonical transformation 5. The bilinear differential form 6. The bracket expressions of Lagrange and Poisson 7. Infinitesimal canonical transformations 8. The motion of the phase fluid as a continuous succession of canonical transformations 9. Hamilton's principal function and the motion of the phase fluidVIII. The Partial differential equation of Hamilton-Jacobi 1. The importance of the generating function for the problem of motion 2. Jacobi's transformation theory 3. Solution of the partial differential equation by separation 4. Delaunay's treatment of separable periodic systems 5. The role of the partial differential equation in the theories of Hamilton and Jacobi 6. Construction of Hamilton's principal function with the help of Jacobi's complete solution 7. Geometrical solution of the partial differential equation. Hamilton's optico-mechanical analogy 8. The significance of Hamilton's partial differential equation in the theory of wave motion 9. The geometrization of dynamics. Non-Riemannian geometrics. The metrical significance of Hamilton's partial differential equationIX. Relativistic Mechanics 1. Historical Introduction 2. Relativistic kinematics 3. Minkowski's four-dimensional world 4. The Lorentz transformations 5. Mechanics of a particle 6. The Hamiltonian formulation of particle dynamics 7. The potential energy V 8. Relativistic formulation of Newton's scalar theory of gravitation 9. Motion of a charged particle 10. Geodesics of a four-dimensional world 11. The planetary orbits in Einstein's gravitational theory 12. The gravitational bending of light rays 13. The gravitational red-shirt of the spectral lines BibliographyX. Historical SurveyXI. Mechanics of the Continua 1. The variation of volume integrals 2. Vector-analytic tools 3. Integral theorems 4. The conservation of mass 5. Hydrodynamics of ideal fluids 6. The hydrodynamic equations in Lagrangian formulation 7. Hydrostatics 8. The circulation theorem 9. Euler's form of the hydrodynamic equations 10. The conservation of energy 11. Elasticity. Mathematical tools 12. The strain tensor 13. The stress tensor 14. Small elastic vibrations 15. The Hamiltonization of variational problems 16. Young's modulus. Poisson's ratio 17. Elastic stability 18. Electromagnetism. Mathematical tools 19. The Maxwell equations 20. Noether's principle 21. Transformation of the coordinates 22. The symmetric energy-momentum tensor 23. The ten conservation laws 24. The dynamic law in field theoretical derivation Appendix I; Appendix II; Bibliography; Index

Sklep: Libristo.pl

Physics With Illustrative Examples From Medicine and Biology - 2871526071

563,27 zł

Physics With Illustrative Examples From Medicine and Biology Springer-Verlag New York Inc.

Książki / Literatura obcojęzyczna

A reissue of a classic book, corrected, edited, and typeset, to be published in the Biological Physics Series. Intended for undergraduate courses in biophysics, biological physics, physiology, medical physics, and biomedical engineering, this book is an introduction to statistical physics with examples and problems from the medical and biological sciences. Topics include the elements of the theory of probability, Poisson statistics, thermal equilibrium, entropy and free energy, and the second law of thermodynamics. Chapters include problems and references. The book can be used as a supplement to standard introductory physics courses, and as a text for medical schools, medical physics courses, and biology departments. The three volumes combined present all the major topics in physics. Originally published in 1974 from the authors's typescript, this reissue will be edited, corrected, typeset, the art redrawn, and an index added. These books are being reissued by Springer in the Biological Physics Series in response to frequent requests to provide these texts to satisfy the growing need among students and practitioners in the medical and biological sciences with a working knowledge of the physical sciences. The books are also in demand in physics departments either as supplements to traditional intro texts or as main text for those departments offering courses with biological or medical physics orientation. A solutions manual will be available.

Sklep: Libristo.pl

Sklepy zlokalizowane w miastach: Warszawa, Kraków, Łódź, Wrocław, Poznań, Gdańsk, Szczecin, Bydgoszcz, Lublin, Katowice

Szukaj w sklepach lub całym serwisie

1. Sklepy z krainaksiazek pl physical significance of entropy or of the second law 27710096

2. Szukaj na wszystkich stronach serwisu

t1=0.278, t2=0, t3=0, t4=0.003, t=0.279

Dla sprzedawców

copyright © 2005-2024 Sklepy24.pl  |  made by Internet Software House DOTCOM RIVER